Homework 3

The Chinese University of Hong Kong Department of Mathematics MMAT 5340 Probability and Stochastic Analysis Prepared by Tianxu Lan Please send corrections, if any, to 1155184513@link.cuhk.edu.hk Please submit your solutions on blackboard before 11:59 AM, Jan 27th 2025

January 20, 2025

1.

(a) Let $X : \Omega \to \mathbb{R}$ be a random variable such that $X \equiv 0$, i.e. for any $\omega \in \Omega X(\omega) = 0$. Prove that $\sigma(X) = \{\emptyset, \Omega\}$. (b) Let $G := \{\emptyset, \Omega\}$, and $X : \Omega \to \mathbb{R}$ be *G*-measurable. Prove that $X \equiv c$ for some constant $c \in \mathbb{R}$.

2.

Let (Ω, \mathcal{F}, P) be a probability space and let $\mathcal{F} = (\mathcal{F}_n)_{n\geq 0}$ be a filtration. Given an \mathcal{F} -predictable process $(H_n)_{n\geq 0}$, which is uniformly bounded, and an \mathcal{F} martingale $(X_n)_{n\geq 0}$, we define a process $(V_n)_{n\geq 0}$ by

$$V_0 := 0, \quad V_n := \sum_{k=1}^n H_k(X_k - X_{k-1}).$$

Prove that $(V_n)_{n\geq 0}$ is still an \mathcal{F} -martingale.

3.

Let (Ω, \mathcal{F}, P) be a probability space and let $\mathcal{F} = (\mathcal{F}_n)_{n \ge 0}$ be a filtration. Given an \mathcal{F} -submartingale $(X_n)_{n \ge 0}$, we define

$$\Delta A_n := E[X_n | \mathcal{F}_{n-1}] - X_{n-1}, \quad \Delta M_n := X_n - E[X_n | \mathcal{F}_{n-1}], \quad \forall n \ge 1,$$

and

$$A_0 = M_0 = 0, \quad A_n := \sum_{k=1}^n \Delta A_k, \quad M_n := \sum_{k=1}^n \Delta M_k.$$

(a) Prove that $(M_n)_{n\geq 0}$ is an \mathcal{F} -martingale, and that $(A_n)_{n\geq 0}$ is an increasing \mathcal{F} -predictable process.

(b) Prove that $(X_n)_{n\geq 0}$ has the decomposition

$$X_n = X_0 + M_n + A_n, \quad \forall n \ge 0.$$

(c) Let $(A_n^1)_{n\geq 0}$ and $(A_n^2)_{n\geq 0}$ be two \mathcal{F} -predictable processes such that $A_0^1 = A_0^2 = 0$. Prove that if $(A_n^1 - A_n^2)_{n\geq 0}$ is an \mathcal{F} -martingale, then $A_n^1 = A_n^2$, a.s. for each $n \geq 1$.

(d) Deduce that the decomposition (1) is unique, i.e. if one has

$$X_n = X_0 + \tilde{M}_n + \tilde{A}_n, \quad \forall n \ge 0,$$

for some \mathcal{F} -martingale $(\tilde{M}_n)_{n\geq 0}$ and increasing \mathcal{F} -predictable process $(\tilde{A}_n)_{n\geq 0}$ such that $\tilde{M}_0 = \tilde{A}_0 = 0$, then $A_n = \tilde{A}_n$ and $M_n = \tilde{M}_n$, a.s. for each $n \geq 1$.